Abstract

The aerothermodynamics of re-entry vehicles vary significantly upon re-entry, descent, and landing, because of the drastic changes in atmospheric density and velocity. In highly rarefied regimes, the conventional Navier-Stokes-Fourier equations may not provide an accurate prediction of aerothermodynamic loads acting on these vehicles. To tackle these challenges, an explicit mixed-type modal discontinuous Galerkin method was developed, based on the second-order Boltzmann-Curtiss constitutive model and the Maxwell slip and Smoluchowski jump conditions. A comprehensive analysis was conducted for different configurations of re-entry vehicles under various degrees of rarefaction. The computational results show that the rotational mode of energy transfer for diatomic gases substantially affects the lift-to-drag ratio and stability of re-entry vehicles. The total drag and heat transfer rate of the second-order constitutive model remained smaller than those of the first-order constitutive model in the rarefied regime, which makes the second-order results in better agreement with the direct simulation Monte Carlo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call