Abstract

In recent years, excess electron transfer in organic liquids has attracted increasing interest owing to the emerging class of liquid organic semiconductors. In this study, to achieve a comprehensive understanding of electron conduction in liquids, we investigate hopping electron conduction in liquids from an atomistic viewpoint. High-pressure liquid benzene is chosen as a simple model system. Hopping electron mobility is computed using a combination of molecular dynamics simulations, quantum chemical calculations, and kinetic Monte Carlo methods. The computed electron mobility is in good agreement with the experimental values. Because the amplitude of the intermolecular vibration observed in liquids is larger compared to that in solids, the effect of dynamic disorder on electron mobility is investigated. The time scale of the change in electronic couplings due to the rotation of molecules is comparable to that of the electron residence time at each benzene molecule at the absence of change in the arrangement of a benzene dimer. Thus, the effect of dynamic disorder is evaluated by a Monte Carlo-based analysis. It is shown that the effect of dynamic disorder on electron mobility is small even though electronic couplings between molecules fluctuate by more than an order of magnitude.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call