Abstract
Phase field modeling and computer simulation is employed to study dielectric composites with core-shell filler particles for high-energy-density applications. The model solves electrostatic equations in terms of polarization vector field in reciprocal space using fast Fourier transform technique and parallel computing algorithm. Composites composed of linear constituent phases (matrix, core, and shell materials) of different dielectric constants are considered. Inter-phase boundary conditions are automatically taken into account without explicitly tracking inter-phase interfaces in the composites. The core-shell structures of filler particles are systematically investigated in terms of shell thickness and dielectric constant with respect to core size and matrix dielectric constant, respectively. The effects of filler particle size, shape, and orientation are considered. It is found that core-shell structures of filler particles provide effective means to mitigate local electric field concentration in dielectric composites, improving dielectric breakdown strength and energy density of the composites. Optimal design of core-shell filler particles requires low shell dielectric constant and thick shell coating as compared to core material and core size, respectively.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have