Abstract

A computational study of the combustion process inside micro-turbine engines is presented. Different turbulence models are assessed and results are compared against experimental data. Results indicate that RANS models and LES with dynamic Smagorinsky sub-grid model fail to achieve convergence or accurate solutions at the meshes employed in this study. Less accurate results are obtained for the DES when compared with LES-WALE. In terms of the combustion, the outlet flow presents temperature gradients that are likely to affect the turbine performance. References M. D. Agrawal and S. Bharani. Performance Evaluation of a Reverse-flow Gas Turbine Combustor using Modified Hydraulic Analogy. The institute of Engineers India Journal MC, April 2004:34--44, 2004. http://www.ieindia.org/publish/mc/0404/apr04mc7.pdf HeonSeok Lee and JeongJung Yoon. The Study on Development of Low NOx Combustor with Lean Burn Characteristics for 20kW class Microturbine. Proceedings of ASME Turbo Expo, 14--17 June, Viena, Austria, 2004. R. Tuccillo and M. C. Cameretti. Comparing different solutions for the micro-gas turbine combustor. Proceedings of ASME Turbo Expo. 14--17 June, Viena, Austria, 2004. T. Kamps. Model Jet Engines. Traplet Publications Ltd. 3rd Edition. 2005. S. Adachia, A. Iwamotoa, S. Hayashib, H. Yamadab and S. Kaneko Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in a multi-stage gas turbine combustor. Proceedings of the Combustion Institute. Volume 31, Number 2, pages 3131--3138, 2007. doi:10.1016/j.proci.2006.07.239 C. Syred, W. Fick, A. J. Griffiths and N. Syred. Cyclone gasifier and cyclone combustor for the use of biomass derived gas in the operation of a small gas turbine in cogeneration plants. Fuel. Volume 83, Issues 17--18, pages 2381--2392, 2004. doi:10.1016/j.fuel.2004.01.013 I. Gurrappa and A. S. Rao. Thermal barrier coatings for enhanced efficiency of gas turbine engines. Surface and Coatings Technology. Volume 201, Number 6, pages 3016--3029, 2006. doi:10.1016/j.surfcoat.2006.06.026 A. Portinhaa, V. Teixeiraa, J. Carneiroa, J. Martinsb, M. F. Costac, R. Vassend and D. Stoeverd. Characterization of thermal barrier coatings with a gradient in porosity. Surface and Coatings Technology, Volume 195, Issues 2--3, pages 245--251, 2005. doi:10.1016/j.surfcoat.2004.07.094 G. Boudier, L. Y. M. Gicquel, T. Poinsot, D. Bissieres and C. Berat Comparison of {les}, {rans} and experiments in an aeronautical gas turbine combustion chamber. Proceedings of the Combustion Institute. Volume 31, Number 2, pages 3075--3082, 2007. http://www.cerfacs.fr/ cfdbib/repository/TR_CFD_06_25.pdf K.-U. Schildmacher, A. Hoffmann A, L. Selle, R. Koch, C. Schulz, H.-H. Bauer, T. Poinsot, W. Krebs and B. Prade. Unsteady flame and flow field interaction of a premixed model gas turbine burner. Proceedings of the Combustion Institute, Volume 31, Number 2, pages 3197--3205, 2007. doi:10.1016/j.proci.2006.07.081 F. Ham, S. Apte, G. Iaccarino, X. Wu, M. Herrmann, G. Constantinescuy, K. Maheshz and P. Moin. Unstructured {les} of reacting Multiphase flows in realistic gas turbine combustors. In Center for Turbulence Research. Annual Research Briefs 2003. http://ctr.stanford.edu/ResBriefs03/asci_combustor_group.pdf A. Datta and S. K. Som. Combustion and emission characteristics in a gas turbine combustor at different pressure and swirl conditions. Applied Thermal Engineering. Volume 19, Number 9, pages 949--967. 1999. doi:10.1016/S1359-4311(98)00102-1 S. James, J. Zhu and M. S. Anand. Large-Eddy Simulations as a Design Tool for Gas Turbine Combustion Systems. AIAA JOURNAL. Volume 44, Number 4, April 2006. J. Artes and K. Schreckling. Building instructions and plans for the KJ-66 turbojet engine. Available at http://www.artesjet.com/. J. H. Ferziger and M. Peric. Computational methods for fluid dynamics. Springer. 3d edition, 2002. FLUENT user manuals. Fluent Inc. v. 6.3.23. USA. Q. Zhou and M. A. Leschziner. A time-correlated stochastic model for particle dispersion in anisotropic turbulence. Proceedings of the 8th Turbulent Shear Flows Symposium. Munich, 1991. A. B. Liu, D. Mather and R. D. Reitz. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays. SAE Technical Paper. 930072, SAE, 1993. R. D. Reitz. Modeling atomization processes in high-pressure vaporizing sprays. Atomization and Spray Technology. 3:309--337, 1987. G. X. Yang and J. S.Chin. Experimental study on atomization of plain jet injector under high pressure co-axial air flow. ASME, 32nd International Gas Turbine Conference and Exhibition. Anaheim, CA, May 31-June 4, 1987. J. S. Chin. Atomization study in Jet Propulsion Lab. BIAA---A survey report. International Journal of Turbo and Jet-Engines. Volume 6, Number 3--4, pages 205--219, 1989. A. H. Lefevbre. Airblast atomization. Progress in Energy Combustion Science. Volume 6, pages 233--261. 1980. K. N. Bray and N. Peters. Laminar Flamelets in Turbulent Flames. In P. A. Libby and F. A. Williams, editors. Turbulent Reacting Flows. pages 63--114. Academic Press, 1994 N. Peters. Laminar Diffusion Flamelet Models in Non Premixed Combustion. Prog. Energy Combust. Sci.. 10:319--339, 1984. L. Elliott, D. B. Ingham, A. G. Kyne, N. S. Mera, M. Pourkashanian, and C. W. Wilson. A novel reduced reaction mechanism for kerosene combustion generated using genetic algorithms. Proceedings of ASME Turbo Expo 2004: Land, sea and air. Vienna, Austria, GT-2004-53053, 2004.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call