Abstract

This work considers the graph partitioning problem known as maximum k-cut. It focuses on investigating features of a branch-and-bound method to obtain global solutions. An exhaustive experimental study is carried out for the two main components of a branch-and-bound algorithm: Computing bounds and branching strategies. In particular, we propose the use of a variable neighborhood search metaheuristic to compute good feasible solutions, the k-chotomic strategy to split the problem, and a branching rule based on edge weights to select variables. Moreover, we analyze a linear relaxation strengthened by semidefinite-based constraints, a cutting plane algorithm, and node selection strategies. Computational results show that the resulting method outperforms the state-of-the-art approach and discovers the solution of several instances, especially for problems with k≥5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call