Abstract

Glutamine (Gln) residues located at N-termini undergo spontaneous intramolecular cyclization, causing the formation of pyroglutamic acid (pGlu) residues. pGlu residues have been detected at the N-termini in various peptides and proteins. The formation of pGlu residues during the fermentation and purification processes of antibody drugs is one of the concerns in the design and formulation of these drugs and has been reported to proceed rapidly in a phosphate buffer. In this study, we have examined the phosphate-catalyzed mechanisms of the pGlu residue formation from N-terminal Gln residues via quantum chemical calculations using B3LYP density functional methods. Single-point energies were calculated using the second-order Møller–Plesset perturbation theory. We performed the calculations for the model compound in which an uncharged N-terminal Gln residue is capped with a methyl amino group on the C-terminal. The activation energy of the formation of pGlu residues was calculated as 83.8 kJ mol–1, which was lower than that of the typical nonenzymatic reaction of amino acid residues. In addition, the computational results indicate that the flexibility of the main and side chains in N-terminal Gln residues was necessary for the formation of pGlu residues to proceed. In the obtained pathway, inorganic phosphate species act as the catalyst by mediating the proton transfer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call