Abstract

Under certain conditions some amino acid (AA) residues undergo special reactions in the gas phase, generating characteristic neutral losses and product ions. Taking these special fragments into account and understanding the effect of AA residues on peptide cleavages will consummate database search algorithms and manual data interpretation in peptide sequencing by mass spectrometry (MS). In this study, the details of the characteristic NH3 and CO losses of glutamine (Gln) residues located at the C-terminus of peptides are presented. A number of selected peptides were fragmented under collision-induced dissociation (CID) in electrospray ionization quadrupole time-of-flight mass spectrometry (ESI-QTOF-MS). Density functional theory (DFT) quantum mechanical calculations at the B3LYP/6-31+G(d,p) level were carried out to optimize the geometry of peptide ions and provide energy barriers of ions in each step during fragmentations. Two characteristic peaks appear near the precursor ions of sodiated Gln C-terminated peptides, suggesting the loss of neutral NH3 and CO via a two-step process. The proposed mechanism of their formation is as follows: after losing NH3 , a non-classical bn * ion is formed with a glutaric anhydride structure that further dissociates to lose CO. The sodiated peptides show more intensive peaks corresponding to the loss of neutral molecules than the protonated ones. This type of neutral loss can also occur at the Gln residue that is rearranged to the C-terminus of sodiated peptides. The experiments and calculations suggest that the two-step characteristic NH3 and CO loss of sodiated peptides is energetically favored, and can be applied to identify C-terminated Gln residues. This study provides a mechanistic insight into the role of sodium ion during peptide fragmentation. Copyright © 2017 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.