Abstract

Abstract Due to the strain-induced martensitic transformation which occurs during plastic deformation, a transformation-induced plasticity (TRIP) phenomenon is generated. With the TRIP phenomenon, the TRIP steel possesses favorable mechanical properties such as high strength, ductility and toughness, and is frequently employed as a structural material. In the past, several researchers clarified experimentally that the strain-induced martensitic transformation and the deformation behavior of TRIP steel depend upon the austenitic grain size. In order to obtain the expected mechanical properties of TRIP steel through control of the austenitic grain size, prediction and control of the material characteristics in the deformation processes is essential. Here, the new strain-induced martensitic transformation kinetics model and constitutive equation of TRIP steels are proposed by considering the dependence of the austenitic grain size. Then, the deformation behavior of a type 304 austenitic stainless steel cylinder is simulated under different environmental temperatures with the various austenitic grain sizes by the finite-element method along with newly-proposed constitutive equations. Finally, the validity of proposed constitutive equations and the possibility of the improvement of the mechanical properties through control of the austenitic grain size are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call