Abstract

Due to its abundance, silicon is the preferred solar-cell material despite the fact that current silicon materials have indirect band gaps. Although the band gap properties of silicon have been studied intensively, until now, no direct band gap silicon-based material has been found or suggested. We report here the discovery of direct band gap silicon crystals. By using conformational space annealing, we optimize various crystal structures containing multiple (10 to 20) silicon atoms per unit cell so that their electronic structures become direct band gap. Through first-principles calculations, we identify many direct and quasidirect band gap crystal structures, which exhibit excellent photovoltaic efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call