Abstract

Based on Green's theorem, a time domain numerical model was constructed to simulate wave making phenomenon caused by a moving ship. In this article, the Rankine sources and dipoles were placed on boundary surfaces (i.e., the ship surface and free surface), and a time-stepping scheme was employed. Its unique characteristic is that steady state can be realized from initial value by employing the time-stepping scheme and unsteady free surface conditions. In time domain, if the results of unsteady flow problem tend to data stabilization after many time steps of computation, they could be regarded as the data of steady ones. This model could be employed to steady or unsteady problems. Theoretical reasoning and computational process of this method was described in detail. The linear and nonlinear boundary conditions on body surface were studied, and the relative means to realize these boundary conditions in iterative computation were also discussed. Some proper parameters about the model of the Wigley hull were determined by many numerical tests, and their influences on wave making resistance and wave pattern were discussed. According to the comparison between numerical results and data available in relative references, the method used in this work is proven to be a reliable method in time domain. And the lattice reorganization in every time step computation is a feasible numerical approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.