Abstract

This paper presents a time-domain second-order method to study the nonlinear wave radiation problem in two dimensions. A time-stepping scheme is adopted to obtain the resulting flow development which satisfies the nonlinear free-surface boundary conditions and the radiation condition to second order, and the numerical procedure utilizes a boundary integral equation method based on Green's theorem to calculate the field solution at each time step. The body surface boundary condition is expanded about the mean body position to second order by a Taylor series. The method is applied to the cases of a semi-submerged circular cylinder and a rectangular cylinder undergoing sinusoidal sway, heave and roll motions. For the case of the circular cylinder, comparisons of the computed hydrodynamic forces at first and second order are made with previous theoretical and experimental results and a favorable agreement is indicated. The importance of second-order effects in the calculation of the hydrodynamic force is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.