Abstract
Drug resistance is increasingly evolving in malaria parasites; hence, it is important to discover and establish alternative drug targets. In this context, GPI-anchor transamidase (GPI-T) is a potential drug target primarily of its crucial role in the development and survival of the parasite in the GPI anchor biosynthesis pathway. The present investigation was undertaken to explore the plausible effects of nsSNP on the structure and functions of GPI-T subunit GPI8p of Plasmodium falciparum. The GPI8p (PF3D7_1128700) was analyzed using various sequence-based and structure-based computational tools such as SIFT, PROVEAN, PredictSNP, SNAP2, I-Mutant, MuPro, ConSurf, NetSurfP, MUSTER, COACH server and STRING server. Of the 34 nsSNPs submitted for functional analysis, 18 nsSNPs (R124 L, N143 K, Y145 F, V157I, T195S, K379E, I392 K, I437 T, Y438H, N439D, Y441H, N442D, N448D, N451D, D457A, D457Y, I458 L and N460 K) were predicted to have deleterious effects on the protein GPI8p. Additionally, I-Mutant 2.0 and MuPro both showed a decrease in stability after mutation as a result of these nsSNPs, suggesting the destabilization of protein. ConSurf findings suggest that most of the regions were highly conserved. In addition, COACH server was used to predict the ligand binding sites. It was found that no mutation was present at the predicted ligand binding site. The results of the STRING database showed that the protein GPI8p interacts with those proteins which either involve the biosynthetic process of attaching GPI anchor to protein or GPI anchor. The present study suggested that the GPI8p could be a novel target for anti-malarial drugs, which provides significant details for further experimentation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have