Abstract
RNA molecules are crucial in different levels of cellular function, ranging from translation and regulating genes to coding for proteins. Additionally, nucleic acids (RNA and DNA molecules) are designed for novel applications in biotechnology. Understanding the structure of a molecule is important in inferring its function, and computational methods for structure prediction have captured the interest of many researchers. Some functions of RNA molecules in cells, such as gene regulation, result from the binding of one RNA molecule to another, so-called target RNA molecule. This has led to recent interest in prediction of the secondary structure formed from interacting molecules. In this paper, we provide a brief overview of methods, applications, and challenges in computational prediction of nucleic acid secondary structure, both for single strands and for interacting strands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.