Abstract
This paper presents innovative numerical methodologies designed to solve challenging time fractional partial differential equations, with a focus on the Burgers’, Fisher–KPP, and nonlinear Schrödinger equations. By employing advanced wavelet techniques integrated with fractional calculus, we achieve highly accurate solutions, surpassing conventional methods with minimal absolute error in numerical simulations. A thorough series of numerical experiments validates the robustness and effectiveness of our approach across various parameter regimes and initial conditions. The results underscore significant advancements in the computational modeling of complex physical phenomena governed by time fractional dynamics and offering a powerful tool for a wide range of applications in science and engineering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Partial Differential Equations in Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.