Abstract
BackgroundPsychotic experiences are thought to emerge from various interrelated patterns of disrupted belief updating, such as overestimating the reliability of sensory information and misjudging task volatility, yet these substrates have never been jointly addressed under one computational framework, and it is not clear to what degree they reflect trait-like computational patterns. MethodsWe introduce a novel hierarchical Bayesian model that describes how individuals simultaneously update their beliefs about the task volatility and noise in observation. We applied this model to data from a modified predictive inference task in a test-retest study with healthy volunteers (N = 45, 4 sessions) and examined the relationship between model parameters and schizotypal traits in a larger online sample (N = 437) and in a cohort of patients with schizophrenia (N = 100). ResultsThe interclass correlations were moderate to high for model parameters and excellent for averaged belief trajectories and precision-weighted learning rates estimated through hierarchical Bayesian inference. We found that uncertainty about the task volatility was related to schizotypal traits and to positive symptoms in patients, when learning to gain rewards. In contrast, negative symptoms in patients were associated with more rigid beliefs about observational noise, when learning to avoid losses. ConclusionsThese findings suggest that individuals with schizotypal traits across the psychosis continuum are less likely to learn or use higher-order statistical regularities of the environment and showcase the potential of clinically relevant computational phenotypes for differentiating symptom groups in a transdiagnostic manner.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have