Abstract

Computational organic chemistry has become a valuable tool in the field of bioorthogonal chemistry, offering insights and aiding in the progression of this branch of chemistry. In this review, I present an overview of computational work in this field, including an exploration of both the primary computational analysis methods used and their application in the main areas of bioorthogonal chemistry: (3 + 2) and [4 + 2] cycloadditions. In the context of (3 + 2) cycloadditions, detailed studies of electronic effects have informed the evolution of cycloalkyne/1,3-dipole cycloadditions. Through computational techniques, researchers have found ways to adjust the electronic structure via hyperconjugation to enhance reactions without compromising stability. For [4 + 2] cycloadditions, methods such as distortion/interaction analysis and energy decomposition analysis have been beneficial, leading to the development of bioorthogonal reactants with improved reactivity and the creation of orthogonal reaction pairs. To conclude, I touch upon the emerging fields of cheminformatics and machine learning, which promise to play a role in future reaction discovery and optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call