Abstract

In the presence of thermal radiation, heat generation/absorption, and chemical reaction, the heat and mass transmission characteristics of a 2-D electrically conducting incompressible Maxwell fluid past a stretched sheet have been examined. There are various real-world applications for this issue, notably the extrusion of polymers and metal thinning. The transport equations take into account Brownian motion as well as thermophoresis when there is a chemical reaction involved. By making use of the relevant similarity variables, the PDEs that govern the stream and the boundary conditions that go along with them may be non-dimensionalized. The ensuing transformed ODEs are solved using the fourth- and fifth-order Runge-Kutta-Fehlberg scheme. It has been determined and quantitatively examined how the different embedded thermo-physical factors influence the velocity, temperature, and concentration. A case study comparison between our findings and those published in the literature reveals a high degree of agreement. Raising the value of the chemical reaction parameter causes a narrowing of the concentration distribution while increasing the temperature causes thermal radiation to have a greater impact. As the quantity of Nt increases, the thickness of the boundary layer grows, causing the surface temperature to increase, ensuing in a temperature increase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call