Abstract
The accuracy of Computational Fluid Dynamics (CFD) models for Atmospheric Boundary Layer (ABL) flows relies largely on the placement of the domain boundaries and the quality of the imposed flow conditions, the inlet boundary in particular. Exploiting the parabolic nature of many ABL flows and of CFD modelled ABL flow in particular, a precursor simulation is used as source of flow data to improve the target domain's inlet flow description over the standard synthetic boundary conditions, one-directionally coupling the solutions to the two simulations. Using the approach, a case of flow over a two wind farm offshore cluster is modelled using two small coupled simulations, matching the results of a single simulation including the full cluster at a significant computational time saving, in the order of 70%. Further savings were shown to be possible by reducing the resolution of the precursor simulation, with negligible impact on the results at the target domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.