Abstract
As an initial step to investigate stimulus-response relations in growth and remodeling (G&R) of cardiac tissue, this study aims to develop a method to simulate 3D-inhomogeneous volumetric growth. Growth is regarded as a deformation that is decomposed into a plastic component which describes unconstrained growth and an elastic component to satisfy continuity of the tissue after growth. In current growth models, a single reference configuration is used that remains fixed throughout the entire growth process. However, considering continuous turnover to occur together with growth, such a fixed reference is unlikely to exist in reality. Therefore, we investigated the effect of tissue turnover on growth by incrementally updating the reference configuration. With both a fixed reference and an updated reference, strain-induced cardiac growth in magnitude of 30% could be simulated. However, with an updated reference, the amplitude of the stimulus for growth decreased over time, whereas with a fixed reference this amplitude increased. We conclude that, when modeling volumetric growth, the choice of the reference configuration is of great importance for the computed growth.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have