Abstract

SummaryIn the alphaproteobacterium, Caulobacter crescentus, phosphorylated CtrA (CtrA∼P), a master regulatory protein, binds directly to the chromosome origin (Cori) to inhibit DNA replication. Using a mathematical model of CtrA binding at Cori site [d], we provide computational evidence that CtrAU can displace CtrA∼P from Cori at the G1-S transition. Investigation of this interaction within a detailed model of the C. crescentus cell cycle suggests that CckA phosphatase may clear Cori of CtrA∼P by altering the [CtrAU]/[CtrA∼P] ratio rather than by completely depleting CtrA∼P. Model analysis reveals that the mechanism allows for a speedier transition into S phase, stabilizes the timing of chromosome replication under fluctuating rates of CtrA proteolysis, and may contribute to the viability of numerous mutant strains. Overall, these results suggest that CtrAU enhances the robustness of chromosome replication. More generally, our proposed regulation of CtrA:Cori dynamics may represent a novel motif for molecular signaling in cell physiology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.