Abstract

In pregnancy, fetal growth is supported by its placenta. In turn, the placenta is nourished by maternal blood, delivered from the uterus, in which the vasculature is dramatically transformed to deliver this blood an ever increasing volume throughout gestation. A healthy pregnancy is thus dependent on the development of both the placental and maternal circulations, but also the interface where these physically separate circulations come in close proximity to exchange gases and nutrients between mum and baby. As the system continually evolves during pregnancy, our understanding of normal vascular anatomy, and how this impacts placental exchange function is limited. Understanding this is key to improve our ability to understand, predict, and detect pregnancy pathologies, but presents a number of challenges, due to the inaccessibility of the pregnant uterus to invasive measurements, and limitations in the resolution of imaging modalities safe for use in pregnancy. Computational approaches provide an opportunity to gain new insights into normal and abnormal pregnancy, by connecting observed anatomical changes from high-resolution imaging to function, and providing metrics that can be observed by routine clinical ultrasound. Such advanced modeling brings with it challenges to scale detailed anatomical models to reflect organ level function. This suggests pathways for future research to provide models that provide both physiological insights into pregnancy health, but also are simple enough to guide clinical focus. We the review evolution of computational approaches to understanding the physiology and pathophysiology of pregnancy in the uterus, placenta, and beyond focusing on both opportunities and challenges. This article is categorized under: Reproductive System Diseases >Computational Models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call