Abstract

A computational approach to the optimization of service properties of two-phase materials (in this case, fracture resistance of tool steels) by varying their microstructure is developed. The main points of the optimization of steels are as follows: (1) numerical simulation of crack initiation and growth in real microstructures of materials with the use of the multiphase finite elements (MPFE) and the element elimination technique (EET), (2) simulation of crack growth in idealized quasi-real microstructures (net-like, band-like and random distributions of the primary carbides in the steels) and (3) the comparison of fracture resistances of different microstructures and (4) the development of recommendations to the improvement of the fracture toughness of steels. The fracture toughness and the fractal dimension of a fracture surface are determined numerically for each microstructure. It is shown that the fracture resistance of the steels with finer microstructures is sufficiently higher than that for coarse microstructures. Three main mechanisms of increasing fracture toughness of steels by varying the carbide distribution are identified: crack deflection by carbide layers perpendicular to the initial crack direction, crack growth along the network of carbides and crack branching caused by damage initiation at random sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call