Abstract

The objective of this paper is to provide an overview of computational modeling, both elastic buckling and nonlinear collapse analysis, for cold-formed steel members. Recent research and experiences with computational modeling of cold-formed steel members conducted within the first author's research group at Johns Hopkins University are the focus of the presented work. This admittedly biased view of computational modeling focuses primarily on the use of the semi-analytical finite strip method and collapse modeling using shell finite elements. Issues addressed include how to fully compare finite strip and finite element solutions, and the importance of imperfections, residual stresses, material modeling, boundary conditions, element choice, element discretization, and solution controls in collapse modeling of cold-formed steel. Examples are provided to demonstrate the expected range of sensitivity in cold-formed steel collapse modeling. The paper concludes with a discussion of areas worthy of future study that are within the domain of cold-formed steel modeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.