Abstract

In aluminium reduction cells, the profile of a new carbon anode changes with time before reaching a steady state shape, since the anode consumption rate, depending on the current density normal to anode surfaces, varies from one region to another. In this paper, a two-dimension model based on Laplace equation and Tafel equation was built up to calculate the secondary current distribution, and the shift of anode shape with time was simulated with arbitrary Lagrangian-Eulerian method. The time it takes to reach the steady shape for the anode increases with the enlargement of the width of the channels between the anodes or between the anode and the sidewall. This time can be shortened by making a sloped bottom or cutting off the lower corners of the new anode. Forming two slots in the bottom surface increases the anodic current density at the underside of the anode, but leads to the enlargement of the current at the side of the anode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.