Abstract

This study investigates the intricacies of animal decision-making in T-maze environments through a synergistic approach combining computational modeling and machine learning techniques. Focusing on the binary decision-making process in T-mazes, we examine how animals navigate choices between two paths. Our research employs a mathematical model tailored to the decision-making behavior of fish, offering analytical insights into their complex behavioral patterns. To complement this, we apply advanced machine learning algorithms, specifically Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and a hybrid approach involving Principal Component Analysis (PCA) for dimensionality reduction followed by SVM for classification to analyze behavioral data from zebrafish and rats. The above techniques result in high predictive accuracies, approximately 98.07% for zebrafish and 98.15% for rats, underscoring the efficacy of computational methods in decoding animal behavior in controlled experiments. This study not only deepens our understanding of animal cognitive processes but also showcases the pivotal role of computational modeling and machine learning in elucidating the dynamics of behavioral science.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call