Abstract

Nitrilase enzyme (a green catalyst) is an industrially important enzyme which hydrolyses various nitrile compounds (containing -CN functional group) into amides and corresponding carboxylic acids. The current study explored the binding affinity and a method to enhance the catalysis activity of the enzyme using computational approaches. Four mutants were generated using sequential site-directed mutagenesis aiming that an increase in hydrogen bonds that will further increase binding efficiency towards the ligand. Molecular dynamics simulation was rigorously performed to check the stability of those mutants followed by docking to verify its interaction with the ligand. Various statistical dynamics analyses were performed to validate the structure. All the studies predict that built mutants are stable. Mutants 2 and 3 showed a better affinity towards acrylamide by forming the highest number of hydrogen bonds implying better catalysis. The binding affinity values of the Mutant 2 and Mutant 3 with acrylamide are −7.44 kcal/mol and −7.17 kcal/mol, respectively. This study may prove useful for the industry to develop efficient nitrilase enzymes with improved catalytic activity. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.