Abstract

Patient-specific modeling of atrial electrical activity enables the execution of simulations that can provide mechanistic insights and provide novel solutions to vexing clinical problems. The geometry and fibrotic remodeling of the heart can be reconstructed from clinical-grade medical scans and used to inform personalized models with detail incorporated at the cell- and tissue-scale to represent changes in image-identified diseased regions. Here, we provide a rubric for the reconstruction of realistic atrial models from pre-segmented 3D renderings of the left atrium with fibrotic tissue regions delineated, which are the output from clinical-grade systems for quantifying fibrosis. We then provide a roadmap for using those models to carry out patient-specific characterization of the fibrotic substrate in terms of its potential to harbor reentrant drivers via cardiac electrophysiology simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call