Abstract
Worn shoes increase the risk of slip-and-fall accidents. Few research efforts have attempted to predict the progression of shoe wear. This study presents a computational modeling framework that simulates wear progression in footwear outsoles based on finite element analysis and Archard's equation for wear. The results of the computational model were qualitatively and quantitatively compared with experimental results from shoes subjected to an accelerated wear protocol. Key variables of interest were the order in which individual tread blocks were worn and the size of the worn region. The order in which shoe treads became completely worn were strongly correlated between the model and experiment (rs > 0.74, p < 0.005 for all of the shoes). The ability of the model to predict the size of the worn region varied across the shoe designs. Findings demonstrate the capability of the computational modeling methodology to provide realistic predictions of shoe wear progression. This model represents a promising first step to developing a model that can guide footwear replacement programs and footwear design with durable slip-resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Wear : an international journal on the science and technology of friction lubrication and wear
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.