Abstract

The heart is a complex organ which produces mechanical force needed for the blood flow. Electrical signals are transformed into active stresses which contract the heart muscle and pump the blood out from the left ventricle. Therefore, comprehensive numerical procedure has to be established in order to simulate this process and to investigate the effects of different drugs on heart behavior. We here present application of the finite element (FE) computational model for simulation of heart beat cycle of the parametric left ventricle model. We are using Hunter excitation model for active, and direct experimental constitute relations for passive mechanical stresses. Additionally, computational model includes hysteretic and compressible behavior according to the experimental investigations. Applicability of our computational model is demonstrated using parametric left ventricle model which includes inlet mitral and outlet aortic valve cross-sections. With using different boundary conditions and prescribed values, this model has potential to mimic the effects of different drugs on heart beat cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.