Abstract

Cardiomyopathy or structural and functional abnormalities of the ventricular myocardium is a common cardiac disease. It can be commonly classified as hypertrophic (HCM) and dilated (DCM) cardiomyopathy. A computational model was developed to simulate drug effects on heart behavior during the heartbeat cycle. The model includes parametric left ventricle geometry supported with the finite element (FE) code PAK with the implemented methodology for loose coupling fluid-structure interaction (FSI) and coupled electromechanics which enables investigation of the influence of different drugs on the conditions of virtual cardiomyopathy patients. Passive mechanical stresses are calculated using a recently introduced orthotropic material model based on an experimental investigation of passive material properties of the myocardium. Active stresses are calculated using the Hunter excitation model. The basic equations for solid mechanics, fluid dynamics, and excitation are summarized, and the applicability of this model is illustrated on a simple model of the left ventricle which includes inlet mitral and outlet aortic valve cross-sections. The presented computational model can serve as a basis for the in-silico simulation of the drug effects in the common types of cardiomyopathy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call