Abstract

Many inelastic solids accumulate numerous cracks before failure due to impact loading, thus rendering any exact solution of the IBVP untenable. It is therefore useful to construct computational models that can accurately predict the evolution of damage during actual impact/dynamic events in order to develop design tools for assessing performance characteristics. This paper presents a computational model for predicting the evolution of cracking in structures subjected to dynamic loading. Fracture is modeled via a nonlinear viscoelastic cohesive zone model. Two example problems are shown: one for model validation through comparison with a one-dimensional analytical solution for dynamic viscoelastic debonding, and the other demonstrates the applicability of the approach to model dynamic fracture propagation in the double cantilever beam test with a viscoelastic cohesive zone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.