Abstract

A computational constitutive model was developed to predict damage and fracture failure of asphalt concrete mixtures. Complex heterogeneity and inelastic mechanical behavior are addressed by the model by using finite-element methods and elastic–viscoelastic constitutive relations. Damage evolution due to progressive cracking is represented by randomly oriented interface fracture, which is governed by a newly developed nonlinear viscoelastic cohesive zone model. Computational simulations demonstrate that damage evolution and failure of asphalt concrete mixtures is dependent on the mechanical properties of the mixture. This approach is suitable for the relative evaluation of asphalt concrete mixtures by simply employing material properties and fracture properties of mixture components rather than by performing expensive laboratory tests recursively, which are typically required for continuum damage mechanics modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.