Abstract

This paper describes recent progress in materials modelling and numerical simulation of the impact response of fibre-reinforced composite structures. A continuum damage-mechanics (CDM) model for fabric-reinforced composites is developed as a framework within which both in-ply and delamination failure may be modelled during impact loading. Damage-development equations are derived and appropriate materials parameters determined from experiments. The CDM model for in-plane failure has been implemented in a commercial explicit finite element (FE) code, and new techniques are used to model the laminate as a stack of shell elements tied by contact interface conditions. This approach allows the interlaminar layers to be modelled and strength reduction due to delamination to be represented; it also provides a computationally efficient method for the analysis of large-scale structural parts. The code is applied to predict the response of carbon-fabric-reinforced epoxy plates impacted at different velocities by a steel impactor. A comparison of structural response and failure modes from numerical simulations and impact tests is given which shows a good agreement for the prediction of delamination damage at low impact energies and fracture and penetration at higher impact energies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.