Abstract

Parkinson’s disease (PD) is associated with α-synuclein (α-Syn), a presynaptic protein that binds to cell membranes. The molecular pathophysiology of PD most likely begins with the binding of α-Syn to membranes. Recently, two peptidomimetic inhibitors (NPT100-18A and NPT200-11) were identified to potentially interact with α-Syn and affect the interaction of α-Syn with the membrane. In this study, the effect of the two peptidomimetic inhibitors on the α-Syn-membrane interaction was demonstrated. DFT calculations were performed for optimization of the two inhibitors, and the nucleophilicity (N) and electrophilicity (ω) of NPT100-18A and NPT200-11 were calculated to be 3.90 and 3.86 (N); 1.06 and 1.04 (ω), respectively. Using the docking tool (CB-dock2), the two α-Syn-peptidomimetic inhibitor complexes (α-Syn-NPT100-18A and α-Syn-NPT200-11) have been prepared. Then all-atom molecular dynamics (MD) simulation was carried out on the α-Syn (control), α-Syn-NPT100-18A and α-Syn-NPT200-11 complex systems in presence of DOPE: DOPS: DOPC (5:3:2) lipid bilayer. From the conformational dynamics analysis, the 3-D structure of α-Syn was found to be stable, and the helices present in the regions (1–37) and (45–95) of α-Syn were found to be retained in the presence of the two peptidomimetic inhibitors. The electron density profile analysis revealed the binding modes of NAC and C-terminal region of α-Syn (in the presence of NPT200-11 inhibitor) with lipid membrane are in the close vicinity from the lipid bilayer centre. Our findings in this study on α-Syn-membrane interactions may be useful for developing a new therapeutic approach for treating PD and other neurodegenerative disorders. Communicated by Ramaswamy H. Sarma

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call