Abstract

The fiber reinforced polymer laminates have found extensive applications because of its advantages over other materials in terms of strength, stiffness, stability, weight saving features, resistance to corrosion and erosion and many more. But due to poor transverse direction strength, a failure mechanism called delamination will occur in case of poor manufacturing or when tools are dropped which would make an impact. In this paper, VCCT is implemented at the interface between base and sub laminate to investigate for 20mm through the width buckling driven delamination growth. The computational prediction of delamination growth initiation is obtained by solving a T300/976 specimen for geometric non linearity using SC8R continuum shell elements of Abaqus CAE and by plotting the required energy release rate at the edge of delamination geometry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call