Abstract

The fiber reinforced polymer laminates have found extensive applications because of its advantages over other materials in terms of thrust to weight ratio, strength to weight ratio, manufacturing benefits such as tailoring, resistance to erosion and corrosion and so on. In the transverse direction, strength, stiffness and stability are comparatively less so that a failure mechanism called interface delamination comes into picture due to poor manufacturing or when tools are dropped that would create an impact load. In this paper, Surface based Cohesive contact behavior is implemented at the interface between base and sub laminate to investigate for 60mm square embedded buckling driven delamination growth. The computational prediction of delamination growth initiation is obtained by solving a HTA/6376C composite laminate specimen for geometric non linearity using SC8R continuum shell elements of Abaqus CAE and by plotting the inplane loads versus out of plane displacements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.