Abstract
The electronic stopping power is a fundamental quantity to many technological fields that use ion irradiation. Here we investigate the validity of using a fully ab initio computational scheme based on linear response time-dependent density functional theory to predict the random electronic stopping power (RESP) of a proton in bulk aluminum. We verify the power of using the extrapolation scheme to overcome the expected convergence issue of the RESP calculations. We show that the calculated RESP of valence electrons compares well with experimental data for low proton velocity only when at full convergence and including the exchange-correlation effect. We demonstrate that the inclusion of valence states only is sufficient for calculating the electronic stopping power up to the stopping maximum.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have