Abstract
The interaction between the upper and lower rotors greatly influences the aeroacoustic characteristics of a counter-rotating nano-coaxial rotor. To study this influence, a numerical investigation was carried out. The unsteady flow field of a single upper rotor was first studied with a large-eddy simulation computational fluid dynamics method coupled with a sliding-mesh technique. The Ffowcs Williams–Hawking equation method was used to investigate the aeroacoustic characteristics of the upper rotor based on the flow field. An experimental setup was established to validate the computational approach. The experimental results matched well with the computational results. Additionally, results show that the peak value of the total sound pressure level appeared near the blade tip, which verified that the tip vortex was one of the most important sources of rotor noise. Then the aeroacoustic noise of the nano-coaxial rotor was studied numerically. It was found that the total sound pressure level of the nano-coaxial rotor was greater than that of the upper rotor. Flow field analysis showed that the shedding vortices of the upper rotor interacted with the lower rotor, resulting in a blade–vortex interaction. It was evident that the aeroacoustic noise was enhanced by the interference between the upper and lower rotors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have