Abstract

Classical swine fever virus (CSFV) p7 viroporin plays crucial roles in cellular ion balance and permeabilization. The antiviral drug amantadine effectively inhibits viral replication by blocking the activity of CSFV p7 viroporin. However, little information is available for the binding mode of amantadine with CSFV p7 viroporin, due to the lack of a known polymer structure for CSFV p7. In this study, we employed AlphaFold2 to predict CSFV p7 structures. Subsequently, we conducted a docking study to investigate the binding sites of amantadine to CSFV p7. Computational analysis showed that CSFV p7 forms a pore channel in a hexameric structure. Furthermore, molecular dynamics (MD) simulations and mutant analyses further suggest that CSFV p7 likely exists as a hexamer. Docking studies and MD simulations showed that amantadine interacts with the hydrophibic regions of tetramer and pentamer, as well as with the hydrophobic pore channel of the hexamer. Considering the potential hexameric assembly of CSFV p7, along with docking results, MD simulations, and the characteristics of the gated ion channels, we propose a model of CSFV p7 ion channel based on its hexameric configuration. In this model, residues E21, Y25, and R34 are suggested to selectively recruit and dehydrate ions, while residues L28 and L31 likely act as hydrophobic constrictors, thereby restricting the free movement of water. The binding of amantadine to residues I20, E21, V24 and Y25 effectively blocks ion transport. However, this proposed molecular model requires experimental validation. Our findings give a structural insight into the models of CSFV p7 as an ion channel and provide a molecular explanation for the inhibition effects of amantadine on CSFV p7-mediated ion channel conductance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.