Abstract

The primary goal of this research is to present a novel computational intelligence approach of the AI-based Levenberg–Marquardt scheme under the influence of backpropagated neural network (LMS-BPNN) for optimizing MHD ternary hybrid nanofluid using Casson fluid over a porous shrinking sheet in the existence of thermal radiation (Rd) effects. The governing partial differential equations (PDEs) showing the Casson ternary hybrid nanofluid are converted into a system of ordinary differential equations (ODEs) with suitable transformations. The numerical data is constructed as a reference with bvp4c (MATLAB built-in function used to solve a system of ODEs) by varying Casson fluid parameters (β), magnetic field (M), porosity (S), nanoparticle concentrations (ϕ1=ϕ2=ϕ3), and thermal radiation (Rd) effects across all LMS-BPNN scenarios. The numerical data-sheet is divided into 80% of training, 10% of testing, and 10% of validation for LMS-BPNN are used to analyze the estimated solution and its assessment with a numerical solution using bvp4c is discussed. The efficiency and consistency of LMS-BPNN are confirmed via mean squared error (MSE) based fitness curves, regression analysis, correlation index (R) and error histogram. The results show that velocity decreases as β grows, whereas velocity increase as M increases. The concentrations of nanoparticles and thermal radiations have increasing effects on θ0. To comprehend the dependability and correctness of the data gained from numerical simulations, error analysis is a key stage in every scientific inquiry. Error analysis is presented in terms of absolute error and it is noticed that the error between the numerical values and predicted values with AI is approximately 10−6. The error analysis reveals that the developed AI algorithm is consistent and reliable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call