Abstract

The control and management of energy and their associated issues are increasingly recognized as one of mankind’s greatest challenges in the coming years to keep pace with the surge in industrialization and technology. Free convection optimizes the heat transfer processes in energy systems like solar collectors and power plants, reducing energy consumption and increasing system effectiveness. Further, studying and analyzing critical factors like magnetic fields, thermal radiation, and the shape of nanoparticles can assist in the control of fluid motion and improve the efficiency of heat transfer processes in a wide range of real-world applications, such as the power sector, aerospace applications, molten metal, nuclear power, and aeronautical engineering. This study aims to scrutinize the thermal performance of a magneto tri-hybrid polar nanoliquid flowing over a radiative sphere, considering the nanosolids’ shape. The single-phase model is developed to acquire the problems governing equations, and the hybrid linearization spectral collection approach is utilized to approximate the solution. The present findings reveal that blade-shaped nanosolids exhibit the highest thermal conductivity ratio when incorporated into the base fluid, whereas spherical nanosolids exhibit the lowest ratio. Volume fraction and thermal radiation factors have an effective role in raising fluid velocity and thermal performance. The magnetic and microapolar factors significantly suppress fluid velocity and energy transfer. As the volume fraction factor increases, the average percentage improvement in convective heat transfer for Al2O3 + Cu + MWCNT/kerosene oil compared to Al2O3 + Cu + graphene/kerosene oil approximately ranges from 0.8 to 2.6%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.