Abstract

Materials scientists are developing new materials to meet increasing demands by employing a systematic approach linking material performance to composition, processing, and microstructure. Computational techniques, such as Calculation of Phase Diagrams and Integrated Computational Materials Engineering, play a crucial role in this process, enabling fast and efficient material design. This study focuses on developing a high damage-tolerant high entropy alloy for hydrogen service, using the two computational techniques to identify optimal composition, predict mechanical properties, and elucidate strengthening mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.