Abstract

Mathematical neuroscience investigates how calcium distribution in nerve cells affects the neurological system. The interaction of numerous systems is necessary for the operation of several cellular processes in neuron cells, such as calcium, buffer, ER etc. The dynamics of interacting parameters give useful information on neural cell function. This work uses a mathematical model to analyze the dynamic interactions of buffer and ER inside neurons, considering their spatial properties. While buffers bind to calcium ions and lower their concentration, the endoplasmic reticulum (ER) serves as a reservoir, holding a significant number of free calcium ions. The uncertainty of initial values of calcium concentration poses challenges for researchers to develop calcium signaling models. In this article, we examined the exact solution and approximate solution of the mathematical model that was analyzed using the fuzzy undetermined coefficient approach. MATLAB is being used to perform the simulation. Endoplasmic reticulum and buffer have been found to have a substantial impact on calcium signaling. Fuzzy differential equation Provides a useful tool for evaluating complicated processes with imprecise values when ordinary differential equations perform not precisely. They allow for the examination of dynamic processes under fuzzy settings, which contributes to advances research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.