Abstract

Glycosylation is an important protein modification that involves enzymatic attachment of sugars to amino acid residues. Understanding the structure of these sugars and the effects of glycosylation are vital for developing indicators of disease development and progression. Although computational methods based on mass spectrometric data have proven to be effective in monitoring changes in the glycome, developing such methods for the glycoproteome are challenging, largely due to the inherent complexity in simultaneously studying glycan structures with their corresponding glycosylation sites. This paper introduces a computational framework for identifying intact N-linked glycopeptides, i.e. glycopeptides with N-linked glycans attached to their glycosylation sites, in complex proteome samples. Scoring algorithms are presented for tandem mass spectra of glycopeptides resulting from collision-induced dissociation (CID), higher-energy C-trap dissociation (HCD), and electron transfer dissociation (ETD) fragmentation modes. An empirical false-discovery rate estimation method, based on a target-decoy search approach, is derived for assigning confidence. The power of our method is further enhanced when multiple data sets are pooled together to increase identification confidence. Using this framework, 103 highly confident N-linked glycopeptides from 53 sites across 33 glycoproteins were identified in complex human serum proteome samples using conventional proteomic platforms with standard depletion of the 7-most abundant proteins. These results indicate that our method is ready to be used for characterizing site-specific protein glycosylation in complex samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.