Abstract

This paper presents a framework for human detection using an ultra-wideband (UWB) radar system and proposes a novel UWB radar antenna design with double-winding structures for radar applications. The proposed antenna achieves high gain and bandwidth, overcoming the shortcomings of Vivaldi antennas, which are the preferred antennas for radar applications. In the proposed novel design, winding structures are incorporated nearer to the main resonator, which suppresses harmonic distortion and enhances the radar detection process. The proposed antenna is designed to cover a frequency range from 6 GHz to 10.5 GHz. The design is analyzed for different design configurations with and without winding structures. However, the dual-side winding structure configuration achieves better performance than the single-side winding structure. The proposed design achieves a maximum bandwidth of 2.09 GHz in the dual-side winding structure configuration, which is a remarkable achievement for radar and precise locating applications. The proposed design achieves improved return loss performance greater than -10 dB in all operating frequencies and voltage standing wave ratios equal to 1 with improved gain and directivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call