Abstract

We present a computational framework for stereopsis based on the outputs of linear spatial filters tuned to a range of orientations and scales. This approach goes beyond edge-based and area-based approaches by using a richer image description and incorporating several stereo cues that have previously been neglected in the computer vision literature. A technique based on using the pseudo-inverse is presented for characterizing the information present in a vector of filter responses. We show how in our framework viewing geometry can be recovered to determine the locations of epipolar lines. An assumption that visible surfaces in the scene are piecewise smooth leads to differential treatment of image regions corresponding to binocularly visible surfaces, surface boundaries, and occluded regions that are only monocularly visible. The constraints imposed by viewing geometry and piecewise smoothness are incorporated into an iterative algorithm that gives good results on random-dot stereograms, artificially generated scenes, and natural grey-level images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.