Abstract
In this work, we provide a note on the spectral gradient projection method for solving nonlinear equations. Motivated by recent extensions of the spectral gradient method for solving nonlinear monotone equations with convex constraints, in this paper, we note that choosing the search direction as a convex combination of two different positive spectral coefficients multiplied with the residual vector is more efficient and robust compared with the standard choice of spectral gradient coefficients combined with the projection strategy of Solodov and Svaiter (A globally convergent inexact newton method for systems of monotone equations. In: Reformulation: Nonsmooth. Piecewise Smooth, Semismooth and Smoothing Methods, pp 355–369. Springer, 1998). Under suitable assumptions, the convergence of the proposed method is established. Preliminary numerical experiments show that the method is promising. In this paper, the proposed method was used to recover sparse signal and restore blurred image arising from compressive sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.