Abstract

The efficiency of ejector-based systems (the “system-scale”) relies on the behaviour of the ejector (the “component-scale”), related to the flow phenomena within the component itself (the “local-scale”). As a consequence of this multi-scale connection, the precise prediction of the “local-scale” is of fundamental importance to sustain the design of commercially viable ejector-based systems. Although it is widely accepted that computational fluid-dynamics can achieve the prediction of the “local-scale” (CFD) modelling approaches, a broad agreement regarding the performances of numerical methods is not reached: different authors applied different methods, and a complete validation is missing so far. This paper contributes to the current discussion and closes the knowledge gap by assessing the performances of a CFD approach for single-phase supersonic ejectors. To this end, a comprehensive validation has been conducted, encompassing a wide range of ejector designs, boundary conditions and working fluids; besides, a screening of modelling approaches is conducted, encompassing a wide range of mesh criteria, geometrical modelling (2-Dimensional and 3-Dimensional approaches), solvers (density-based and pressure-based) and turbulence models (k-ε RNG and k-ω SST). The extensive comparison with experimental data allowed assessing and determining the influence of mesh criteria, geometrical modelling, solvers and turbulence models. In particular, k-ω SST has shown the best agreement with the experimental measurements concerning both global and local flow quantities, with an average entrainment ratio error of 14% and a maximum of 20%, under on-design operating mode. Finally, the simulation outcomes have been further post-processed to derive ejector component efficiencies, to contribute to the present discussion regarding closures in lumped parameter ejector modelling approaches. In conclusion, this paper thoroughly assesses the performance of a CFD model for single-phase ejector simulations and poses precise guidelines to be applied in future research activities and to support the design of ejector-based systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.