Abstract

This paper presents a method to evaluate ejector efficiency in function of local flow parameters. The paper is divided into two parts. In the first part, a Computational Fluid-Dynamics (CFD) approach for convergent nozzle ejectors is presented and computational results are validated using experimental velocity and temperature profiles at different sections. The validation process includes the evaluation of seven Reynolds-Averaged Navier–Stokes (RANS) turbulence models: the Spalart-Allmaras and the k–omega SST models show better performance in terms of convergence capability and flow and thermal field prediction. In the second part, local flow phenomena and their influence on ejector component efficiencies are investigated. The validated CFD approach is used to determine the efficiencies of the ejector primary nozzle, suction chamber, and mixing zone. Efficiency maps, regressing equation linking efficiencies, and local flow quantities are proposed and discussed. Finally, global ejector performance is mapped and considerations are outlined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.