Abstract

The manufacture of ceramic brick goes through the stages of raw material extraction, clay homogenization, material conformation, drying and firing. Drying is the phase that needs greater care, as it involves removing part of the moisture from the brick, in order to preserve its quality after process. This work aims to predict heat and mass transfer in the drying of ceramic bricks in oven using computational fluid dynamics. Considering the constant thermophysical properties, a transient three-dimensional mathematical model was used to predict mass and energy transfer between the material and air during the process. Drying simulations at temperature of 100°C were performed with the air flow in the frontal direction to the ceramic brick holes and the results were compared with those obtained for the air flow in the perpendicular direction to the brick holes reported in the literature. It was found that the position of the brick in relation to the direction of air flow inside the oven affected directly the drying and heating kinetics, and the distribution of temperature and moisture content inside the brick. The positioning of the holes in the brick parallel to the direction of the air flow resulted in reduction at the drying time and, consequently, in energy savings in the process, more uniform drying, and improvement in the product quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call